
An Introduction to eCos

 1

An Introduction to eCos, the Embedded Configurable
Operating System

by

Dr Nick Garnett

nickg@eCosCentric.com

#404 at the Embedded Systems Conference – San Francisco 2004

An Introduction to eCos

 2

Introduction
eCos is an open source, royalty- free, real-time operating system intended for embedded
applications. The highly configurable nature of eCos allows the operating system to be customized
to precise application requirements, delivering the best possible run-time performance and an
optimized hardware resource foo tprint. A thriving net community has grown up around the
operating system ensuring ongoing technical innovation and wide platform support.

This tutorial gives a broad overview of the things that an engineer will need to know and do to
evaluate eCos, develop applications, and port eCos to a new hardware platform. We will cover the
following areas:

 An overview of the functionality of eCos

 How to configure eCos

 How to build applications

 How to port eCos to a new board

Overview
eCos is provided as an open source runtime system supported by the GNU open source
development tools. Developers have full and unfettered access to all aspects of the runtime system.
No parts of it are proprietary or hidden, and you are at liberty to examine, add to, and modify the
code as you deem necessary. These rights are granted to you and protected by the eCos license. It
also grants you the right to freely develop and distribute applications based on eCos. We welcome
all contributions back to eCos such as board ports, device drivers and other components, as this
helps the growth and development of eCos, and is of benefit to the entire eCos community.

One of the key technological innovations in eCos is the configuration system. The configuration
system allows the application writer to impose their requirements on the run-time components, both
in terms of their functionality and implementation, whereas traditionally the operating system has
constrained the application's own implementation. Essentially, this enables eCos developers to
create their own application-specific operating system and makes eCos suitable for a wide range of
embedded uses. Configuration also ensures that the resource footprint of eCos is minimized as all
unnecessary functionality and features are removed. The configuration system also presents eCos as
a component architecture. This provides a standardized mechanism for component suppliers to
extend the functionality of eCos and allows applications to be built from a wide set of optional
configurable run-time components. Components can be provided from a variety of sources
including the standard eCos release, commercial third party developers and open source
contributors.

The royalty- free nature of eCos means that you can develop and deploy your application using the
standard eCos release without incurring any royalty charges. In addition, there are no up -front
license charges for the eCos runtime source code and associated tools. eCos delivers, without
charge, everything necessary for basic embedded applications development.

eCos is designed to be portable to a wide range of target architectures and target platforms including
16, 32, and 64 bit architectures, MPUs, MCUs and DSPs. The eCos kernel, libraries and runtime
components are layered on the Hardware Abstraction Layer (HAL), and thus will run on any target
once the HAL and relevant device drivers have been ported to the target's processor architecture and
board. Currently eCos supports thirteen different target architectures (ARM, Hitachi H8300, Intel
x86, MIPS, Matsushita AM3x, Motorola 68k/Coldfire, PowerPC, SuperH, Fujitsu FR-V, Calmrisc,

An Introduction to eCos

 3

OpenRisc, SPARC and NEC V8xx) including many of the popular variants of these architectures
and evaluation boards. Many new ports are in develo pment and will be released as they become
available.

eCos has been designed to support applications with real- time requirements, providing features such
as full preemptability, minimal interrupt latencies, and all the necessary synchronization primitives,
scheduling policies, and interrupt handling mechanisms needed for these type of applications. eCos
also provides all the functionality required for general embedded application support including
device drivers, memory management, exception handling, C, math libraries, etc. In addition to
runtime support, the eCos system includes all the tools necessary to develop embedded applications,
including eCos software configuration and build tools, and GNU based compilers, assemblers,
linkers, debuggers, and simulators.

The following core functionality is provided:

- Hardware Abstraction Layer (HAL)

- Real-time kernel
 - Interrupt handling
 - Exception handling
 - Choice of schedulers
 - Thread support
 - Rich set of synchronization primitives
 - Timers, counters and alarms
 - Choice of memory allocators
 - Debug and instrumentation support

- µITRON 3.0 compatible API

- POSIX compatible API

- ISO C and math libraries

- Serial, Ethernet, LCD, PCMCIA, wallclock and watchdog device drivers

- USB slave support

- ROM, RAM, FAT16 and JFFS2 filesystems

- TCP/IP networking stacks
 - Bootp/DHCP
 - DNS
 - TFTP/FTP
 - SNMP
 - IPv6
 - HTTPD
 - PPP
 - VNC

- GDB debug support

- RedBoot ROM Monitor
 - Flash management
 - Serial and Ethernet download
 - Serial and Ethernet debugging

An Introduction to eCos

 4

Configuring eCos
The configuration system is a major feature of eCos. In the large scale this is enabled by dividing
eCos into a number of packages. There is a separate package for each subsystem, for example the
kernel, HALs, network stack and each device driver are all separate packages. Packages can also be
versioned, and a number of different versions of the same package may be present in the source
repository simultaneously.

Each package contains a number of directories for the source files, include files, CDL scripts and
other files that may be part of it. The CDL (Component Description Language) script describes the
package to the configuration system. Information in the CDL script includes the set of source files
to be compiled and any internal configuration options that may be needed.

The CDL file also contains dependency constraints on other packages and their option values. In
addition to dependencies on the presence or absence of other packages, the CDL script can include
requirements on the values, or ranges, of configuration options exported by other packages. For
example, the POSIX package not only requires that the kernel package be present, but also requires
it to implement prioritized threads, timeslicing, and priority inheritance.

Since the requirements expressed in the CDL files of different packages may conflict, and the user
is also able to make his/her own changes to the configuration, it is possible for an invalid
configuration to be generated. For this reason the configuration tools contain an inference engine
which attempts to resolve any conflicts automatically.

eCos contains two versions of the configuration tool, a GUI tool, configtool, and a command line
version, ecosconfig. Both tools contain the same CDL interpreter and inference engine, they just
present a different user interface. They also both work on the same save files, so the tools may be
used interchangeably. The GUI configuration tool is built using wxWindows, a portable windowing
toolkit, and runs on both Windows and Lin ux hosts. It presents a tree view of the configuration
space, see Figure 1 for an example. Large scale configuration changes such as adding or removing
whole packages are supported by dialogs. Smaller scale changes, such as altering the values of
specific options, can be done directly in the tree view. This tool also includes a subsystem to build
the configured eCos library and to build and run the test programs that are part of the distribution.

The command line tool, ecosconfig , runs in both Linux and Windows under Cygwin (a free UNIX
compatible porting layer for Windows). It is useful for automated build and testing systems, or for
users who prefer this mode of working. The tool itself only directly supports large scale
configuration actions such as apply ing a template or adding and removing packages. Small scale
configuration of individual option values is handled by editing the human-readable save file and
then re-executing ecosconfig to run the inference engine and update any dependencies.

The end result of running either configuration tool is a build directory tree containing a set of
synthesized makefiles. These makefiles can be run from configtool directly, or, for command-line
users, by executing make in the top-level of the build directory. The outp ut of the build process is an
install directory containing a tree of include files plus a lib directory containing libtarget.a – the
compiled eCos system – some object files and a linker script. These are used by the application to
generate a complete exec utable image which can then be downloaded to the target.

An Introduction to eCos

 5

Example Configuration Session
This section runs through an example configuration session that shows how eCos is configured and
built.

Figure 1 shows the startup screen of the configtool. On the left is a tree view of the configuration
space with each major package listed. To the right of each entry in the tree view is its current value,
in this case it is the version number of the entries that are packages.

The panel to the top right shows the properties of the item currently selected in the tree view. Here
it shows the properties of the kernel package. The most important part here is the Macro property
which will be defined as a C preprocessor macro in a header (.h) file when this package is present.
The panel immediately below it shows a description of the package derived from the package's
CDL file.

The panel at the bottom of the screen is for command output when a build is being done.

The first thing we need to do is select the target hardware and a template to base our configuration
on. In the Build menu we can select the Templates entry and we get the dialog shown in Figure 2.
The top Hardware section allows the user to select a specific target board. In this case we are
selecting the PC target. The Packages section allows us to select a specific template to base our
configuration on. Templates are predefined sets of packages with any conflicts between them
already resolved. Templates exist to set up the configuration for particular purposes, such as
running POSIX or ìITRON applications, or with particular functionality such as networking or

Figure 1 -- Configtool Initial Screen

An Introduction to eCos

 6

building RedBoot. In this example we are going to select the POSIX template. The packages that
will be included in the configuration are listed at the bottom of the dialog.

Clicking the OK button takes us back to the main screen. Here we can inspect and maybe change
the configuration by opening up the tree view. Figure 3 shows the view opened up to show the
configuration options that control the kernel support for priority inversion protection. The POSIX
package requires that this option be enabled, so as an experiment let's disable this option in the
kernel. Figure 4 shows what happens when we do that, we get a dialog from the inference engine
showing us a conflict. The POSIX configuration options _POSIX_THREAD_PRIO_INHERIT and
_POSIX_THREAD_PRIO_PROTECT depend on this option being defined. The inference engine is
proposing a solution, which is to disable the options in the POSIX package. If we accept that
proposed solution by clicking the Continue button we will return to the main screen with the kernel
support now disabled, as shown in Figure 5.

Having configured eCos we are now ready to build the eCos library and tests. If we select the Build-
>Tests menu item, configtool will generate the build and install directories, synthesize the makefiles
and invoke make. Output from the build process will appear in the output panel at the bottom of the
main configtool window. Once the build completes successfully, we can run some tests.

Figure 2 -- Templates Dialog

An Introduction to eCos

 7

Figure 3 -- Configuration Options

Figure 4 -- Conflict Dialog

An Introduction to eCos

 8

Figure 5 -- Resolved Conflict

Figure 6 -- Executables Dialog

An Introduction to eCos

 9

Clicking the Tools->Run Tests menu item brings up the dialog shown in Figure 6. This shows all
the tests that have been built. If we click the Check All button and then hit the Run button we will
start executing the tests.

In this example we have chosen the PowerPC simulator target, which does not need real hardware
to execute, so the programs start running immediately. The Output tab shows the full output of the
test execution, but the configuration tool is able to parse the output and generate a summary, which
is shown in the Summary tab, Figure 7. Here we can see for each test whether it passed or failed.
Inapplicable tests are ones that rely on packages that have not been included in the configuration or
which require specific values of certain options that are not true for this configuration.

Program Development
The eCos tools merely generate a set of include files, a library, some object files and a linker script
for combining with an application to make an executable. How the application is developed is up to
the user, eCos imposes no methods of its own.

Figure 7 -- Summary Dialog

An Introduction to eCos

 10

The simplest approach is to use the command line tools that form part of the GCC toolchain
together with GNU make. An example makefile is included as part of the eCos system so this is
very easy to do. The user is also able to use his/her own favorite editor for program development.
For debugging the command line version of GDB can be used, or its GUI mode, Insight. Most of
the eCos developers use emacs which provides support for invoking make and running GDB from
within it, to provide many of the useful features of an IDE (Integrated Development Environment).

For those users who want to use a full IDE, eCos is well supported by the Eclipse/CDT IDE.
Eclipse is an open source IDE framework developed by a consortium that includes IBM, Borland.
Red Hat, SuSE and many others. CDT is a set of C/C++ development plugins for Eclipse that have
been further modified by eCosCentric to support embedded eCos development. Eclipse includes an
integrated editor and source browser and an integrated debugger. CDT interfaces to the GCC
toolchain and uses GNU make to execute builds and interfaces to GDB to debug programs.

Application development is not confined to these approaches, any development environment may
be used. The only restriction is that the GCC toolchain should be used to compile and link
applications. Debugging with GDB is recommended since other debuggers may not be able to
interpret the debug information included in the object file by the GCC tools.

eCos has a number of facilities for debugging applications. RedBoot supports the GDB remote
debug protocol which will allow programs to be downloaded and debugged over either serial or,
where available, Ethernet connections. The protocol stub may also be included into any executable
so that it may be debugged without RedBoot present – although this supports serial communications
only. GDB can also support hardware debug mechanisms such as JTAG, BDM and some ICEs.
Within eCos itself there are debug mechanisms such as an execution trace buffer and kernel
instrumentation. If none of these debug mechanisms are available, there is always the fallback of
printing out messages. The diag_printf() function uses very low level HAL facilities to emit
messages through a diagnostic serial channel.

Porting eCos
This section covers the structure of the eCos Hardware Abstraction Layer (HAL) and describes the
general steps needed to port eCos to a new platform.

HAL Structure
eCos is designed to be highly portable. Most of eCos is target independent and is layered on top of a
Hardware Abstraction Layer (HAL). In addition to isolating hardware specific code from the rest of
the system, the HAL is itself structured to simplify the porting process and to maximize the amount
of code that can be reused between similar targets.

The HAL for a particular target is divided into a number of packages. The most generic package is
the Architecture HAL, which encapsulates the features of a particular CPU architecture. This
includes starting up the system from the reset vector as well as handling exceptions and interrupts.
Other pieces of hardware that may be handled at this level include the Memory Management Unit
(MMU), the Floating Point Unit (FPU) and the CPU caches. The Architecture HAL also provides
code to support thread context switching and architecture specific debugging operations such as
planting breakpoints or single stepping.

The Variant HAL provides support for a particular variant of an architecture. These variations range
from instruction set differences to the collection of on-chip peripherals available in different
packages. Each variant usually corresponds to a particular physical device – a single processor chip

An Introduction to eCos

 11

or microcontroller for example. Depending on where in the architecture they are defined, some or
all of the support for the MMU, FPU and caches may be located here rather than in the architecture
HAL. Other things that are often handled at this level are memory and interrupt controllers, UARTs
and PCI bus interfaces.

The Platform HAL covers the features specific to a particular board. Its main job is to initialize the
board and define the position and size of memory and peripherals that are not already handled by
the variant HAL. If the variant does not represent a highly integrated device then the memory and
interrupt controllers may need to be defined here, together with UARTs, bus interfaces and any
other devices such as LED and LCD displays.

In addition to these three main HAL levels there may be others. The Common HAL provides code
that needs to live at HAL level, but is portable to all targets. This includes the GDB remote protocol
stub and the rest of the target-end code for debugging. It also implements the virtual vector service
interface that is used for communication between RedBoot and eCos applications. There are also
some auxiliary HALs which provide support for functionality that is common to many different
targets. These HALs may operate at either the variant or platform level. Examples are the XScale
common core HAL that provides common XScale functionality to all XScale variants and the
QUICC device support HAL that provides QUICC device functionality to various PowerPC
platforms.

All HALs export a set of well defined interfaces to the rest of eCos. Internally, the interfaces
between the packages that make up the HAL are more fluid and are under the control of the HAL
designer; however most HALs follow a standard pattern.

The public interfaces are all exported from the Architecture HAL through a set of standard header
files. These headers in turn include standard headers from the variant and platform HALs. All the
public interfaces are defined as C preprocessor macros. This approach allows for a variety of
different implementations for the HAL interfaces such as code fragments, function calls or inline
assembler. It also allows the variant and platform HALs to override or modify the base
implementation by simply redefining the appropriate macro.

Code for each HAL package is included in a variety of assembler and C source files which are
compiled and added to the system library. As with the headers, there are standard names and
conventions about what each file will contain. In addition to the sources, HAL packages, like all
packages, contain a CDL file. This describes the package, listing the source files and expressing any
dependencies it may have on other packages. Where necessary the variant and platform packages
may define things that reconfigure the architecture HAL to support a different sub- variant. Specific
to platform HALs are a set of MLT (Memory Layout Tool) files which define the layout of RAM,
ROM and other memory regions on the target board, and the allocation of program sections to them.
These are used to generate the linker script for building executables. There is a separate MLT file
for each startup type (ROM, RAM etc.) that the platform supports.

Porting Process
There is no simple recipe for porting an eCos HAL. The exact set of steps and the order in which
they must be done will vary from one target to another. This section will therefore only give some
general hints about how to go about it and describe the general areas in which work is needed. The
most common porting activity is to support a new board. This section will therefore concentrate on
doing a platform port, with some references to variant ports. Architecture ports are rare and
somewhat more involved.

An Introduction to eCos

 12

The best approach to generating a new HAL is to copy an existing HAL and modify it to match the
new hardware. This provides the HAL author with a framework for the new HAL. The preferable
approach is to choose a platform HAL that uses the same variant HAL as the target board. Some
files in each HAL are named for the target, so the first job is to rename those files to match the new
HAL. The most prominent such files are the CDL script and the MLT memory layout files, but
some of the source files may also have platform specific names. Within the CDL file it will also be
necessary to rename the component names to match the new platform, this can usually be done very
easily with an editor's search and replace operation.

The next step is to update the package database to refer to the new HAL. There are two entries that
need to be added. The first is a package entry for the new platform HAL, which can usually be
cloned from an existing entry. The second is a target entry for the board. It is in this target entry that
the various HAL packages are brought together to form a complete HAL for any given board.

After doing this we now essentially have a complete copy of the original HAL under another name.
We now need to start modifying the code to support the new target. This can range from simply
changing a few constants for the memory controller, to a wholesale rewrite, depending on how
close the current code is to the target board.

The first thing to change is the initialization code. This is nearly always done in the platform HAL
since this is where detailed knowledge of the layout of memory devices such as RAM and ROM are
known, and where device registers or PCI bus windows should be mapped. Initialization is divided
between a number of assembler level macros and C functions. The assembler macros need only get
the system up to a level where it can execute C code safely. This usually means initializing the
memory controller and maybe the MMU and caches. The remaining initialization can usually be left
until we reach C code, where it is easier to do the more complex initializations required by things
such as PCI bus interfaces.

Figure 8 shows the structure of the eCos exception and interrupt architecture. The mechanisms used
to enter exception handlers in different architectures vary enormously. The purpose of the eCos
system is to provide a common, portable mechanism that can be applied to all architectures and

Figure 8 -- Exception and Interrupt Architecture

An Introduction to eCos

 13

platforms. Attached to the hardware interrupt vectors are a set of Trampoline routines that translate
the hardware entry mechanism into an indirect jump through the VSR Table. This trampoline may
be as simple as a single instruction, as on the ARM, or may be a handful of instructions that
interrogate a CPU register and decode it into a table index, as on the MIPS. The VSR table entries
point to an assembly code Vector Service Routines (VSRs) which know how to handle that kind of
exception or interrupt. Exception VSRs usually just pass the event up to the kernel, or to the GDB
remote protocol stubs, if present, which will usually result in GDB returning with a break event.
The interrupt VSRs need to interrogate the interrupt controller and decode what it tells them into an
ISR Table index, from which a pointer to a (usually C) Interrupt Service Routine (ISR) is fetched
and executed. It is this translation that the platform HAL needs to implement, which it does by
defining the mapping between the interrupt controller and the ISR table, and providing an assembler
level macro to do the decoding.

In addition to decoding interrupts during interrupt processing, the platform HAL must also define
macros that operate on the interrupt controller to mask and unmask each individual interrupt,
acknowledge interrupts if necessary and configure them.

The single most important interrupt source for eCos is the clock interrupt. This provides the kernel
with a time base by generating interrupts at a fixed frequency. In some targets it is possible to use
an architecture defined timer (MIPS and PowerPC do this for example), and in others there is a
common timer device integrated on-chip. However, for most platforms an external timer device
must be programmed to generate these interrupts.

The clock can be set to tick at any frequency, depending on the ability of the CPU to handle the
interrupt rate. The clock resolution, the number of nanoseconds per tick, is expressed as a fraction
to allow frequencies which cannot be expressed as a whole number of nanoseconds, such as 60Hz,
to be represented. It is the platform HAL's job to define the numerator and denominator of this
fraction, together with the period, which is the initialization value for the timer device. In many
HALs it is fairly easy to calculate the period from the resolution in the CDL script.

To program the clock, the HAL must define a macro to initialize the timer device. It must also
define a macro to reset the device after an interrupt – where there is no need to do anything this
macro may be left empty. A macro to read the number of ticks since the last interrupt must also be
defined; some simple arithmetic on this value, together with the period and resolution allows
accurate time intervals to be calculated. A final, optional, macro implements a microsecond busy
delay loop, using the timer, for use in device drivers and other places where very short delays are
needed.

eCos needs access to low level serial IO supplied by the HAL. This is used for diagnostic messages
and for the GDB remote debug protocol. It differs from fully buffered interrupt driven serial I/O
which is provided by a separate device driver. The low-level serial support is mostly handled by
RedBoot, and is exported to the application either though the virtual vector interface or system call
traps.

The HAL support for serial IO is slightly complicated by the need to support the virtual vector
interface, but this is mostly boilerplate code and can just be copied. Apart from defining initial baud
rates in the CDL, the HAL author simply needs to implement initialization, getc() and putc()
routines. When a program is running, GDB can send a Ctrl-C character to interrupt it and to support
this the HAL routines also define a function that is called from the interrupt subsystem to test for an
incoming interrupt.

Cache support is mainly handled in the variant HAL rather than the platform, since caches are

An Introduction to eCos

 14

integrated into the CPU. In some architectures, where the main cache operations are part of the
instruction set, all the variant HAL needs to do is define the cache dimensions: total size, line size
and number of ways. Where there is no architectural definition for the cache, the variant HAL must
also define the cache operations. These are split into two groups, those that operate on each cache as
a whole, and those that only operate on groups of lines. Global cache operations are those that
enable or disable the caches as a whole, invalidate or flush the entire cache. The line operations take
an address range and apply an operation to just the group of cache lines that cover that range. Since
not all hardware implements all of these operations, these macros are only defined if the underlying
support is present.

The last thing that a platform HAL must define is the memory layout of linked executables. This is
defined in the MLT files which consist of an .ldi file and a matching .h file. The .ldi file
defines the location and size of the ROM and RAM memory that will be used by the application and
the allocation of program sections (such as .text, .data and .bss) to them. The .ldi file is
combined with a more generic .ld file, defined in the architecture or variant HAL, to generate a
target.ld linker script file in the install directory, which is then used to link any application.
The .h file is a header file that application and system code can include to access memory layout
related definitions.

A separate set of MLT files are defined for each startup type supported by the platform, for
example: ROM – applications that run out of ROM, RAM – applications that run entirely in RAM,
or ROMRAM – applications that copy themselves from ROM to RAM before running. The
memory layout for each of these startup types is usually arranged so that a ROM-resident
application like RedBoot does not use the same memory as a RAM application, allowing them to
coexist in the same machine.

Once all of these functional areas have been addressed it should be possible to configure and build
either eCos or RedBoot for the target board. It is usually recommended that HAL authors start by
trying to bring RedBoot up on any board first. The RedBoot environment is much easier to work in,
being interrupt- and thread- free, and once RedBoot is running, the job of running and testing eCos
is much easier.

The first problem to solve when porting RedBoot to any board is how to get it into memory in the
first place. With luck there may be an existing ROM monitor that can be used for this purpose.
Alternatively it may be necessary to use a JTAG or BDM debugger. Once the executable can be
loaded the next thing to get working is the initialization code which sets up the memory controller
and the serial IO code. Once these are working then RedBoot will generally start up and run.

Once a RAM version of RedBoot is running it is necessary to get a ROM-resident version that st arts
from the reset vector running. This will usually need programming to ROM or FLASH memory. If
FLASH is present then the appropriate FLASH driver should be implemented (see later) and the
ROM version of RedBoot programmed from the RAM version. However, care must be taken here
to avoid rendering the board unbootable; this is where a JTAG/BDM interface is useful since the
board can always be rescued.

Once RedBoot is running, it is then a fairly easy job to get eCos running. The main things that need
doing are programming the interrupt controller and the timer. The eCos executable can be loaded
over the serial line using GDB and debugged like any other program. It is normal to choose a subset
of the standard tests that come with eCos for this initial bring- up: tm_basic for testing the
functionality of the clock and the rest of eCos, clocktruth for testing that the clock period has
been calculated correctly, except1 to check that exception handling is working.

An Introduction to eCos

 15

Additional Packages

In addition to the HAL, there are a number of other packages and subsystems that may need porting
to provide full support for a given platform. These are mostly device drivers except for PCI bus
support, which is an addition to the HAL. A device driver infrastructure exists for FLASH memory,
serial and Ethernet device drivers. The infrastructure divides all drivers into a generic driver for a
particular device, or class of devices, plus a platform specific package that customizes the generic
driver to a particular platform. As with HALs, the standard porting technique is to copy an existing
driver and modify it.

eCos Resources
The main eCos website is at http://ecos.sourceware.org. This site contains the latest stable release of
eCos, as well as the CVS repository for ongoing development. Full documentation, a FAQ , lists of
supported hardware and third party contributions are available. The site also hosts a number of
mailing lists for users and developer interaction.

eCosCentric employs most of the original developers of eCos, and offers a number of products that
build on the public releases. These include CD ROM versions of the stable releases which include
pre-built toolchains; eCosPro, a tested and supported release for specific targets; and general
support, and consultancy services. eCosCentric's website can be found at http://eCosCentric.com.

